Polymeric nanoparticles containing Tithonia diversifolia (hemsl) a. Gray flowers alcoholic extract and coated by hyaluronic acid_ development, synthesis, and characterization
Main Article Content
Abstract
Nanoparticles are systems formed by biodegradable, synthetic or natural polymers, that have gained significant importance in different industry segments, as well as being the highlight of essential researches. These tiny particles present various promising characteristics, such as: site-specific and gradual drug release and improvement of active principle solubility and stability. The combination of nanotechnology with medicinal plants could be able to enhance the action of plant extracts, such so that many innovative drug carriers have emerged, including polymeric nanoparticles. The objective of this study was to synthesize and characterize polymeric nanoparticles coated with hyaluronic acid, containing Tithonia diversifolia (Hemsl) A. Gray flowers alcoholic extract, aiming to improve the nanoparticle’s stability, for possible future applications. The synthesis occurred through emulsion polymerization, where the monomer n-butyl-cyanoacrylate was incorporated with Dextran® into an aqueous HCl solution, with posterior addition of the alcoholic plant extract and neutralization reaction with NaOH. Stability parameters, such as hydrodynamic diameter, polydispersity index, zeta potential, spectroscopy (IV), Scanning Electron Microscopy (SEM), thermogravimetry (TG) and Differential Exploration Calorimetry (DSC) were analysed. The nanoparticle system was evaluated taking into consideration particle stability prior and posterior to the addition of the extract, as well as coated and uncoated particles. The results demonstrated the good reactivity of the monomers of cyanoacrylates, as well as effectiveness of hyaluronic acid in relation to the proposed objective, evidenced in the results obtained by Infrared Spectroscopy, by SEM, DSC and, also, TG. The study demonstrated that there are possible future applications for this method.
Article Details
Copyright Statement - Policy Proposal for Open Access Journals
Authors who publish in the Brazilian Journal of Natural Sciences (BJNS) agree to the following terms: 1 - Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License allowing sharing of the work with recognition of the authorship of the work and initial publication in this journal. 2 - Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal. 3 - Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes, as well as increase the impact and citation of published work. This is an open access article under the CC-BY license
References
2. BEHAN, N.; BIRKINSHAW, C.; CLARKE, N. Poly n-butyl cyanoacrylate nanoparticles: a mechanism study of polymerization and particle formation. Biomaterials, v.22, p. 1335-1344, 2001.
3. BERTHOLON, I.; VAUTHIER, C.; LABARRE, D. Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: Influences of surface morphology, length, and type of polysaccharide. Pharmaceutical Research, v. 23, p.1313–1323, 2006.
4. BONIFÁCIO B V; et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014; 9: 1–15. Disponível em:
5. CAI Y.; et al. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Science. v. 74, n.11, pp. 2157-2184, 2004.
6. CHOWDHURY A R.; et al. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochemistry Journal. v. 366, n. 5, pp. 653-661, 2002.
7. COSTA EMMB, BARBOSA A S, ARRUDA T A, et al. Estudo in vitro da ação antimicrobiana de extratos de plantas contra Enterococcus faecalis. J Bras Patol Med Lab. 2010; 46(3):175–180.
8. CUFFINI Silvia L; PITALUGA JUNIOR Altivo; TOMBARI Dora. Polimorfismo em Fármacos. In: STORPIRTIS, Sílvia et al. Biofarmcotécnica. Rio de Janeiro: Guanabara Koogan, 2009. p. 26-28.
9. CUNHA ASC, JR, et al. Microemulsões como veículo de drogas para administração ocular tópica. Arq Bras Oftamol. 2003;66(3):385–391.
10. CUSHINE T P T.; LAMB A J. Antimicrobial activity of flavonoids. International Journal Antimicrobials Agents. v. 26, n. 5, pp. 343,356, 2005.
11. DAUDT R M. et al. A nanotecnologia como estratégia para o desenvolvimento de cosméticos. Cienc. Cult., São Paulo, vol.65, n.3, Julho 2013. Disponível em: http://cienciaecultura.bvs.br/scielo.php?script=sci_arttext&pid=S0009- 67252013000300011&lng=en&nrm=iso > Acesso em: 4 Outubro 2017.
12. DAS S; NG W K.; TAN R B H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, v. 47, n. 1, p. 139–51, 2012.
13. GAMA R M; ARMANDO-JR J, GUIMARÃES M. Phytochemical screening and antioxidant activity of etanol extract of Tithonia diversifolia (Hemsl) A. Gray dry flowers. Asian Pac J Trop Biomed 2014; 4(9): 740-742.
14. GUIMARÃES M. Desenvolvimento de nanopartículas de poli (n-butil-cianoacrilato) com zidovudina revestidas por ácido hialurônico para veiculação em gel de uso transdérmico. 2015. 149 p. Tese (Doutorado) - Curso de Farmácia, Produção e Controle Farmacêuticos, Universidade de São Paulo, São Paulo, 2015.
15. GUTERRES, S.S.; BNVENUTTI, E.V.; POHLMANN, A.R.Nanopartículas poliméricas para administração de fármacos. In: DURÁN, N.; MATTOSO, L.H.C.; MORAIS, C.P. (eds), Nanotecnologia: Introdução, preparação e caracterização de nanomateriais e exemplos de aplicação. 2 ed. Artliber Editora. São Paulo, 2012.
16. HE, M.; ZHAO, Z.; YIN, L.; TANG, C.; YIN, C. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. International Journal of Pharmaceutics, v.373, p.165-173, 2009.
17. JÚNIOR J.A. Avaliação do efeito do extrato etanólico das flores secas de Tithonia diversifolia (Hemsl) A. Gray veiculado em emulsão no processo de reparação tecidual induzido na pele de ratos wistar. Faculdade de Medicina do ABC. 2014.
18. LACERDA A.M.; et al. Screening of plants with potential phototoxic. Revista Brasileira de Farmácia. v. 92, n. 4, pp. 352-355, 2011.
19. NASCIMENTO G G F.; et al. Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Brazilian Journal Microbiology. v. 31, n. 2, pp. 247-256, 2000.
20. NAYAK B S; PEREIRA L M P. Catharanthus roseus flower extract has wound- healing activity in Sprague Dawley rats. BMC Complementary and Alternative Medicine. V. 6, n.4, 2006.
21. OWOYELE V B; et al. Studies on the anti-inflammatory and analgesic properties of Tithonia diversifolia leaf extract. Journal of Ethnopharmacology. V. 90, n. 2, pp. 317-321, 2004.
22. RADAIC, A. Como estudar interações entre nanopartículas e sistemas biológicos. Quím. Nova, São Paulo , v. 39, n. 10, p. 1236-1244, Dec. 2016 . Available from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-0422016001001236&lng=en&nrm=iso >. Access on 25 Mar. 2017. http://dx.doi.org/10.21577/0100-4042.20160146.
23. REDDY L H.; MURTHY R. R. Influence od polymerization variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles. Acta Pharma, India,n. 54, p.103-118, 26 fev. 2004.
24. SCHAFFAZICK S R; et al. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Química Nova, v. 26, n.5, p. 726-737, 2003.
25. SANTOS J S. Nanopartículas: Aplicações cosméticas e farmacêuticas. São Paulo: Pharmabooks, 2010.
26. SILVA E C da et al. Análise térmica aplicada à cosmetologia. Brazilian Journal Of Pharmaceutical Sciences, São Paulo, v. 43, n. 3, p.347-356, jul. 2007.
27. SIMEONOVA, M. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles. Acta Biomaterialia, v. 5, p. 2109–2121, 2009.
28. SINTOV A C; SHAPIRO L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Control Release.2004;95(2):173–183.
29. VAUTHIER C et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Advanced Drug Delivery Reviews. V. 55, n. 4, p. 519-548, 2003.
30. VOGEL A I et al. Análise Química Quantitativa. 6. ed. Rio de Janeiro: Ltc, 2017. 488 p. Disponível em: https://integrada.minhabiblioteca.com.br/books/978-85-216-2580-3/epubcfi/6/10[;vnd.vst.idref=copyright]!/4/10/6@0:0 >. Acesso em: 20 out. 2017.