Explorando o Potencial das Bactérias Wolbachia no Biocontrole de Vetores e Doenças
Conteúdo do artigo principal
Resumo
Introdução: A bactéria endossimbiótica Wolbachia tem sido amplamente estudada por seu potencial revolucionário no controle de doenças transmitidas por mosquitos, como dengue, zika e chikungunya. Ela pode infectar diversas espécies de insetos, incluindo o mosquito Aedes aegypti, vetor importante dessas doenças. Uma das características notáveis da Wolbachia é sua capacidade de modular a resposta imunológica de seus hospedeiros e reduzir sua capacidade vetorial, o que pode ter implicações significativas na interação entre os mosquitos e os patógenos que transmitem. A presença de Wolbachia em mosquitos pode induzir respostas imunes que protegem contra diversos patógenos, destacando seu potencial no controle de doenças vetoriais. Metodologia: Este trabalho é uma revisão que busca elucidar os mistérios deste tão curioso simbionte, apresentando suas características e habilidades que podem se tornar ferramentas úteis no biocontrole de vetores e doenças. Resultados e Discussão: A compreensão da interação entre a Wolbachia e seus hospedeiros pode abrir novos caminhos no desenvolvimento de estratégias inovadoras para o controle de doenças transmitidas por vetores, oferecendo esperanças na redução da carga dessas enfermidades que afetam milhões de pessoas em todo o mundo. Conclusão: As características da Wolbachia contribuem para uma prática eficaz de controle biológico capaz de interromper a transmissão de doenças transmitidas por vetores.
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Declaração de Direito Autoral - Proposta de Política para Periódicos de Acesso Livre
Autores que publicam no Brazilian Journal of Natural Sciences (BJNS) concordam com os seguintes termos: 1 - Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License que permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista. 2 - Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista. 3 - Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
Este é um artigo de acesso aberto sob a licença CC- BY
(http://creativecommons.org/licenses/by/4.0)
Referências
Vetores | Observatório de Clima e Saúde [Internet]. climaesaude.icict.fiocruz.br. Disponivel em: https://climaesaude.icict.fiocruz.br/tema/vetores-0#:~:text=Em%20nosso%20pa
Doenças transmitidas por vetores | RETS - Rede Internacional de Educação de Técnicos em Saúde [Internet]. www.rets.epsjv.fiocruz.br. 2022. Disponivel em: https://www.rets.epsjv.fiocruz.br/doencas-transmitidas-por-vetores#:~:text=As%20doen
Simmons CP, Farrar JJ, van Vinh Chau N, Wills B. Dengue. New England Journal of Medicine. 2012 Apr 12;366(15):1423–32.
World Health Organization. (2009). Dengue guidelines for diagnosis, treatment, prevention and control : new edition. World Health Organization.
Boletim Epidemológico: Monitoramento dos casos de arboviroses até a semana epidemiológica 52 de 2022,. Secretaria de Vigilância em Saúde e Ambiente | Ministério da Saúde; 2023.
Dutra HLC. (2014). ASPECTOS BIOLÓGICOS DA INFECÇÃO PELAS CEPAS wMel e wMelPop de Wolbachia SOBRE POPULAÇÕES NATURAIS DE Aedes aegypti DO RIO DE JANEIRO [Tese de Mestrado]. Belo Horizonte: Programa de Pós-graduação em Ciências da Saúde, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz
Smith HS. (1919). On Some Phases of Insect Control by the Biological Method1. Journal of Economic Entomology, 12(4), 288–292. https://doi.org/10.1093/jee/12.4.288
Mascarin GM, Pauli G. Bioprodutos à base de fungos entomopatogênicos. In: Madelaine Venzon; Trazilbo José de Paula Júnior; Angelo Pallini. (Org.). Controle Alternativo de Pragas e Doenças na Agricultura Orgânica. 1 ed. Viçosa: U.R. EPAMIG ZM, 2010, v. 4, p. 169-195.
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. (2008). How many species are infected with Wolbachia? - A statistical analysis of current data. FEMS Microbiology Letters, 281(2), 215–220. https://doi.org/10.1111/j.1574-6968.2008.01110.x
Landmann F. (2019). The Wolbachia Endosymbionts . Microbiology Spectrum, 7(2). https://doi.org/10.1128/microbiolspec.bai-0018-2019
Werren JH, Baldo L, Clark ME (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969
Ribeiro RM. Wolbachia e incompatibilidade citoplasmática em Anastrepha sp.1 aff. fraterculus [Tese de Mestrado]. São Paulo: Instituto de Biociências da Universidade de São Paulo. Departamento de Genética e Biologia Evolutiva; 2009. 51. p.
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell. 2009 Dec;139(7):1268–78.
Zug R, Hammerstein P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038544
Oliveira CD, Moreira LA (2012). Tópicos Avançados em Entomologia Molecular Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular.
Casiraghi M, Bordeinstein SR, Baldo L, et al. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151, 4015–4022 (2005).
Baldo L, Werren JH. Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Curr. Microbiol. 55, 81–87 (2007).
Scholz M, Albanese D, Tuohy K, Donati C, Segata N, Rota-Stabelli O. (2020). Large scale genome reconstructions illuminate Wolbachia evolution. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19016-0
Mavingui P, Moro CV, Tran-Van V, Wisniewski-Dyé F, Raquin V, Minard G, Tran FH, Voronin D, Rouy Z, Bustos P, Lozano L, Barbe V, González V. (2012). Whole-genome sequence of Wolbachia strain wALbB, an endosymbiont of tiger mosquito vector Aedes albopictus. In Journal of Bacteriology (Vol. 194, Issue 7, p. 1840). https://doi.org/10.1128/JB.00036-12
Zchori-Fein E, Pelrlman SJ, Kelly SE, Katzir N, Hunter MS. Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of ‘Candidatus Cardinium hertigii’. Int. J. Syst. Evol. Microbiol. 54, 961–968 (2004).
Pannebakker BA, Pijnacker LP, Zwaan BJ, Beukeboom LW. Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae). Genome 47, 299–303 (2004).
Stouthamer R, Kazmer DJ. Cytogenetics of microbe associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73, 317–327 (1994).
Vandekerckhove TTM, Watteyne S, Bonne W, et al. Evolutionary trends in feminization and intersexuality in woodlice (Crustacea, Isopoda) infected with Wolbachia pipientis
Kageyama D, Traut W. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc. R. Soc. Lond. B 271, 251–258 (2004).
Charlat S, Reuter M, Dyson EA, et al. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr. Biol. 17, 273–277 (2007).
Eleftherianos L, Atri J, Accetta J, Castillo JC. (2013). Endosymbiotic bacteria in insects: Guardians of the immune system? Frontiers in Physiology, 4 MAR. https://doi.org/10.3389/fphys.2013.00046
Sasaki T, Ishikawa H. Transinfection of Wolbachia in the mediterranean flour moth, Ephestia kuehniella, by embryonic microinjection. Heredity 85, 130–135 (2000)
Selivon D, Luiz A, Ribeiro AF, Marino CL, Lima A, Coscrato VE. Wolbachiaendosymbiont in a species of the Anastrepha fraterculuscomplex (Diptera: Tephritidae). Invertebrate Reproduction & Development. 2002 Dec 1;42(2-3):121–7.
Hadfield SJ, Axton JM. Germ cells colonized by endosymbiotic bacteria. Nature. 1999 Dec;402(6761):482–2.
Frydman HM, Li JM, Robson DN, Wieschaus E. 2006. Somatic stem cell niche tropism in Wolbachia. Nature 441:509–512 http://dx.doi.org /10.1038/nature04756.
Serbus LR, Sullivan W. 2007. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog. 3:e190
Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, Sullivan W. 2005. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte. PLoS Pathog. 1:e14
Werren JH. Biology of Wolbachia. Annual Review of Entomology. 1997 ;42:587–609. Available from: https://pubmed.ncbi.nlm.nih.gov/15012323/
Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. (2008). The genetics and cell biology of Wolbachia-host interactions. In Annual Review of Genetics (Vol. 42, pp. 683–707). https://doi.org/10.1146/annurev.genet.41.110306.130354
Bordenstein SR, Werren JH. 2007. Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Hered Edinb 99:278–287 http://dx.doi.org /10.1038/sj.hdy.6800994.
Yen JH, Barr AR. 1971. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658 http://dx.doi.org /10.1038/232657a0.
Clark ME, Veneti Z, Bourtzis K, Karr TL. 2002. The distribution and proliferation of the intracellular bacteria Wolbachia during spermatogenesis in Drosophila. Mech Dev 111:3–15 http://dx.doi.org/10.1016/S0925-4773 (01)00594-9.
Callaini G, Dallai R, Riparbelli MG. 1997. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci 110:271–280.
Beckmann JF, Ronau JA, Hochstrasser M. (2017). A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nature Microbiology, 2. https://doi.org/10.1038/nmicrobiol.2017.7
le Page DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD, Layton EM, Funkhouser-Jones LJ, Beckmann JF, Bordenstein SR. (2017). Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature, 543(7644), 243–247. https://doi.org/10.1038/nature21391
Ogunlade ST, Adekunle AI, McBryde ES, Meehan MT. (2022). Modelling the ecological dynamics of mosquito populations with multiple co-circulating Wolbachia strains. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25242-x
Bourtzis K, Pettigrew MM, O’neill SL. (2000). Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. In Insect Molecular Biology (Vol. 9, Issue 6).
Zheng Y, Wang JL, Liu C, Wang CP, Walker T, Wang YF. (2011). Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila. BMC Genomics 12:595. doi: 10.1186/ 1471-2164-12-595
Xi Z, Gavotte L, Xie Y, Dobson S. (2008). Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9:1. doi: 10.1186/1471-2164-9-1
Wong ZS, Hedges LM, Brownlie JC, Johnson KN. (2011). Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS ONE 6:e25430. doi: 10.1371/journal.pone.0025430
Cerenius L, Soderhall K. (2004). The prophenoloxidase-activating system in invertebrates. Immunological Reviews, 198(1), 116–126. doi:10.1111/j.0105-2896.2004.00116.x
Thomas P, Kenny N, Eyles D, Moreira LA, O’Neill SL, Asgari S. (2011). Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti. Dev. Comp. Immunol. 35, 360–365
Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL. (2012). The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog. 8:e1002548. doi: 10.1371/journal.ppat.1002548
Sullivan W. (2017). Wolbachia, bottled water, and the dark side of symbiosis. In Molecular Biology of the Cell (Vol. 28, Issue 18, pp. 2343–2346). American Society for Cell Biology. https://doi.org/10.1091/mbc.E17-02-0132
Fraser JE, de Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, O’Neill, SL. (2017). Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathogens, 13(12). https://doi.org/10.1371/journal.ppat.1006751
Alexandrov ID, Alexandrova MV, Goryacheva II, Rochina NV, Shaikevich EV, Zakharov IA. 2007. Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster. Russ J Genet 43:1147–1152 http://dx.doi.org/10.1134/S1022795407100080.
Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. (2008). Wolbachia and virus protection in insects. Science 322:702. doi: 10.1126/science.1162418
Teixeira L, Ferreira A, Ashburner M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6:e2. doi: 10.1371/journal.pbio.1000002
Walker T, Johnson PH, Moreira LA, et al. A non-virulent Wolbachia infection blocks dengue transmission and rapidly invades Aedes aegypti populations Nature 476, 450–455 (2011).
Bian G, Xu Y, Lu P, Xie Y, Xi Z. (2010). The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathogens, 6(4), 1–10. https://doi.org/10.1371/journal.ppat.1000833
Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. (2016). Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host and Microbe, 19(6), 771–774. https://doi.org/10.1016/j.chom.2016.04.021
Caragata EP, Dutra HLC, O’Neill SL, Moreira LA. (2016). Zika control through the bacterium Wolbachia pipientis. In Future Microbiology (Vol. 11, Issue 12, pp. 1499–1502). Future Medicine Ltd. https://doi.org/10.2217/fmb-2016-0177
Zélé F, Nicot A, Duron A, Rivero A. (2012). Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system. J. Evol. Biol. 25, 1243–1252.
Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. (2011a). Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 7:e1002043. doi: 10.1371/journal.ppat.1002043
Lin M, Rikihisa Y. (2003). Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infection and Immunity, 71(9), 5324–5331. https://doi.org/10.1128/IAI.71.9.5324-5331.2003
Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T, Hester S, Charles PD, Thomas B, Sinkins SP. (2017). Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00610-8
Bellan SE. (2010). The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. PLoS One 5, e10165.
Bäck AT, Lundkvist A. Dengue viruses - an overview. Infection ecology & epidemiology, v. 3, p. 1–21, 2013.
Enayati A, Hemingway J. (2010). Malaria management: past, present, and future. Annu. Rev. Entomol. 55, 569-591.
Brownstein JS, Hett E, O'Neill S.L. (2003). The potential of virulent Wolbachia to modulate disease transmission by insects. J. Invertebr. Pathol. 84, 24-29.
Rasgon JL, Styer LM, Scott TW. (2003). Wolbachia-induced mortality as a mechanism to modulate pathogen transmission by vector arthropods. J. Med. Entomol. 40, 125-32.
Sinkins SP, O'Neill SL. Wolbachia as a vehicle to modify insect populations. In: Handler A, James AA, eds. Insect transgenesis: methods and applications. Boca Raton, FL: CRC Press; 2000. p. 271-287.
Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiology. 2007 Jan 30;7(1).
McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF ., et al. Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti. Science. 2009 Jan 2;323(5910):141–4. Available from: https://science.sciencemag.org/content/323/5910/141
Lefoulon E, Clark T, Guerrero R, Cañizales I, Cardenas-Callirgos JM, Junker K, et al. Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microbial Genomics. 2020 Dec 1;6(12).
Strübing U, Lucius R, Hoerauf A, Pfarr KM. Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes. International Journal for Parasitology. 2010 Aug;40(10):1193–202.
Gottlieb Y, Zchori-Fein E. Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entomologia Experimentalis et Applicata. 2001 Sep;100(3):271–8.
Dedeine F, Boulétreau M, Vavre F. Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity. 2005 Aug 24;95(5):394–400.
Manoj RRS, Latrofa MS, Epis S, Otranto D. Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasites & Vectors. 2021 May 7;14(1).
Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, et al. Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. International Journal for Parasitology. 2004 Feb;34(2):191–203.
Genchi C, H. Kramer L, Sassera D, Bandi C. Wolbachia and Its Implications for the Immunopathology of Filariasis. Endocrine‚ Metabolic & Immune Disorders-Drug Targets. 2012 Mar 1;12(1):53–6.
Taylor MJ, Hoerauf A, Bockarie M. Lymphatic filariasis and onchocerciasis. The Lancet. 2010 Oct;376(9747):1175–85. Available from: https://reader.elsevier.com/reader/sd/pii/S0140673610605867?token=12A92CDD977070157C045A8F251A68804ED8D51FC390E600EF6098F3059927015419AFCA68B01287C4AA7B405835D499
Slatko BE, Taylor MJ, Foster JM. The Wolbachia endosymbiont as an anti-filarial nematode target. Symbiosis. 2010 Jun 5;51(1):55–65.
Walker M, Specht S, Churcher TS, Hoerauf A, Taylor MJ, Basáñez MG. Therapeutic efficacy and macrofilaricidal activity of doxycycline for the treatment of river blindness. Clin Infect Dis. 2015;60(8):1199-1207. doi:10.1093/cid/ciu1152
Foster JM, Hoerauf A, Slatko BE, Taylor MJ. The molecular biology, immunology and chemotherapy of Wolbachia bacterial endosymbionts of filarial nematodes. In: Kennedy M, Harnett W, editors. Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology. Wallingford, UK: CABI; 2011.
Landmann F, Voronin D, Sullivan W, Taylor MJ. Anti-filarial activity of antibiotic therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes. PLoS Pathog. 2011 Nov;7(11):e1002351. doi: 10.1371/journal.ppat.1002351. Epub 2011 Nov 3. PMID: 22072969; PMCID: PMC3207916.
Bouchery T, Lefoulon E, Karadjian G, Nieguitsila A, Martin C. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis. Clinical Microbiology and Infection. 2013 Feb;19(2):131–40.
Turner JD, Langley RS, Johnston KL, et al. Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 to induce disease manifestations of filariasis. J Biol Chem. 2009;284(33):22364-22378. doi:10.1074/jbc.M901528200
Ribeiro Dos Santos G, Durovni B, Saraceni V, et al. Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study. Lancet Infect Dis. 2022;22(11):1587-1595. doi:10.1016/S1473-3099(22)00436-4
Pinto SB, Riback TIS, Sylvestre G, et al. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. PLoS Negl Trop Dis. 2021;15(7):e0009556. Published 2021 Jul 12. doi:10.1371/journal.pntd.0009556
Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, Supriyati E, Wardana DS, Meitika Y, Ernesia I, Nurhayati I, Prabowo E, Andari B, Green BR, Hodgson L, Cutcher Z, Rancès E, Ryan PA, O'Neill SL, Dufault SM, Tanamas SK, Jewell NP, Anders KL, Simmons CP; AWED Study Group. Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue. N Engl J Med. 2021 Jun 10;384(23):2177-2186. doi: 10.1056/NEJMoa2030243. PMID: 34107180; PMCID: PMC8103655.
Dufault SM, Tanamas SK, Indriani C, et al. Disruption of spatiotemporal clustering in dengue cases by wMel Wolbachia in Yogyakarta, Indonesia. Sci Rep. 2022;12(1):9890. Published 2022 Jun 14. doi:10.1038/s41598-022-13749-2
Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, et al. Stability of the wMel Wolbachia Infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis. 2014;8(9):e3115. Published 2014 Sep 11. doi:10.1371/journal.pntd.0003115
Dainty KR, Hawkey J, Judd LM, et al. wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations. Microb Genom. 2021;7(9):000641. doi:10.1099/mgen.0.000641
Popovici J, Moreira LA, Poinsignon A, Iturbe-Ormaetxe I, McNaughton D, O'Neill SL. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem Inst Oswaldo Cruz. 2010;105(8):957-964. doi:10.1590/s0074-02762010000800002
Hertig M. The Rickettsia,Wolbachia pipientis(gen. et sp.n.) and Associated Inclusions of the Mosquito,Culex pipiens. Parasitology. 1936 Oct;28(4):453–86.
Werren J, O’Neill SL. The evolution of heritable symbionts [Internet]. research.monash.edu. Oxford University Press; 1997 [cited 2023 Sep 13]. p. 1–41. Available from: https://research.monash.edu/en/publications/the-evolution-of-heritable-symbionts
Mascarenhas RO. Endossimbionte Wolbachia em moscas-das-frutas do gênero Anastrepha (Tephritidae) e em vespas parasitóides (Braconidae) associadas [dissertação]. São Paulo: Universidade de São Paulo, Instituto de Biociências; 2007 [citado 2023-11-22]. doi:10.11606/D.41.2007.tde-30082007-143156.
Manoj RRS, Latrofa MS, Mendoza-Roldan JA, Otranto D. Molecular detection of Wolbachia endosymbiont in reptiles and their ectoparasites. Parasitol Res. 2021;120(9):3255-3261. doi:10.1007/s00436-021-07237-1
Simón F, Kramer LH, Román A, et al. Immunopathology of Dirofilaria immitis infection. Vet Res Commun. 2007;31(2):161-171. doi:10.1007/s11259-006-3387-0
Li SJ, Ahmed MZ, Lv N, et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 2017;11(4):1019-1028. doi:10.1038/ismej.2016.164