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ABSTRACT

Introduction: Overall bone metabolism is highly regulated by the intestine, mainly mediated by parathyroid hormone (PTH) 
and vitamin D. However, emerging pieces of evidence have shown this regulation is also strongly associated with intestinal 
microbiota by releasing metabolites, which affects directly or indirectly the bone. Objective: To review the contributions of the 
intestinal microbiota to bone. Methods: Thus, a narrative review from articles on contributions of intestinal microbiota to bone 
was conducted using database PubMed covering a period from 1997 until July 2023. Articles published in the form of original 
articles, systematic review or meta-analysis using the descriptors: bone and microbiota, bone and bacteria, gut microbiota and 
bone and probiotics were read and summarized throughout text. Results: Initially, we searched for understanding, which bacteria 
are resident or transitory and which are the factors released that either indirectly or directly act on bone, thus modifying its quantity 
or quality. Therein, we briefly explored how intestine, and bone are interconnected and finally about how the type of intestinal 
microbiota is associated with bone metabolism, quality and quantity. In particular, we reported some main studies on probiotics 
and bone health. Conclusion: This review brought together information from the literature on the role of intestinal bacteria in 
bone, revealing possibilities for directing the microbiota to maintain or gain bone in quantity and quality and thus prevent bone 
fractures in a close future, especially for osteoporotic individuals.
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INTRODUCTION

The human intestinal microbiota comprises bacteria, archaea, 
fungi, protists, and viruses that live together and interact with 
each other and with host cells. In particular, the human intestine 
is colonized by trillions of bacteria, important to digestion process 
and absorption, in addition to forming the most volume feces. 
Increasing pieces of evidence have shown a source of metabolites 
derived from microbiota has implications on different organs. The 

population of bacteria present along the gastrointestinal tract 
is widely diverse and determined strongly by microbial habitat 
(mouth, throat or intestine) (1). From this moment, the intestinal 
microbiota is simply defined as microbiota. 

The main bacteria found in intestine are Bacteroidetes and 
Firmicutes account for approximately 90% and a lower extent 
Actinobacteria, Proteobacteria, and Verrucomicrobia (1, 2).

A consensus of the European society for clinical and economic 
aspects of osteoporosis, osteoarthritis and musculoskeletal 
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diseases pointed out that intestinal microbiota may influence 
the response to osteoarthritis medications by regulating drug 
metabolism and bioavailability (3). Osteoporosis, characterized 
by low bone mass density and microarchitecture deterioration 
of bone tissue with a consequent increase in bone fragility and 
susceptibility to fracture (4).  Bone is an organ with direct contact to 
muscles, tendons, cartilage, bone marrow by which it can regulate 
it. Although the intestine is not intimately attached to the bones, 
the hormones and metabolites derived from it, targets directly or 
indirectly bone cells (5). 

Several studies show that bone maintenance, gain or loss 
(6) influence the bone. Specifically, metabolites from bacteria 
digestion as butyrate, acetate, and propionate are known energetic 
source for epithelium (7, 8), in addition to trimethylamine N-oxide 
(9), tryptophan (10) are more recently, described as mediators 
of bone metabolism (CHEVALIER; KIESER; ÇOLAKOĞLU; 
HADADI (11). The immune system also regulates bone mass 
through mechanisms involving CD4+ T cells or through innate 
immunity, mediating the effects of microbiota on inflammation and 
bone metabolism (12). Thus, it seems to have a direct or indirect 
link among bacterial metabolites, the immune system, and the 
musculoskeletal system.

Probiotics are the main bacteria-containing food products used 
to influence the intestinal microbiota-bone; however, in general, 
studies showed a beneficial action of taking probiotics whereas 
others showed opposite effects, evidencing controversial role on 
bone health (13). Thus, this review brings to the light the importance 
of the intestinal bacteria to bone, which creates possibilities of 
targeting microbiota to maintain or gain bone quantity and quality.

METHODS

This narrative review was performed through a search of 
scientific articles on microbiota and its relationship with bone in 
the PubMed database, covering the period from 1979 to July 
2023. Publications were selected in the form of original articles, 
integrative reviews, or systematic reviews, using the descriptors: 
bone and microbiota, bones and bacteria, intestinal microbiota.

FINDINGS

The resident human intestinal microbiota

Humans are colonized by bacteria before birth, and the 
microbiota eventually reaching maturity at about 3 years of age 
(14) and been important in every stage until extreme longevity (15, 
16). Different parts of body contain its own bacteria population due 
a plethora of factors such as pH, diet, geography, age, disease, 
drugs, genetics and early exposure (lactation, natural birth or 
Cesarean section) as mapped by the Human Microbiome Project 
Consortium in 2012 (1). 

The intestine represents the main source of bacteria, totalizing 
almost 2 kilograms or 95% of total amount of bacteria in adults (1, 17). 
The bacterial phyla representative of the human intestinal microbiota 

is Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, 
and Verrucomicrobia with predominance of Firmicutes and 
Bacteroidetes whereas Actinobacteria (Bifidobacteriaceae family) 
and Proteobacteria (Enterobacteriaceae family) are found in a 
lower number. In the Bacterioidetes phylum, the most studied 
genera are Bacteroides, Prevotella and the Firmicutes phylum 
(including species of Lactobacillus) are related to intestinal health 
maintenance. The main bacterial taxonomic classification found in 
the intestines were recently summarized by Checa-Ros at al. in 
2021 (18)

The outstanding importance of intestinal bacteria is to digest 
substances from food intake, synthesis of vitamins B and K and the 
metabolism of bile acids, other sterols and xenobiotics (19). Many 
of these groups are also responsible for body decomposition after 
death, including bone (20).

Association between intestine and bone

The digestive system is formed by an extensive gastrointestinal 
tract and its main associated organs such as tongue, teeth, salivary 
glands, pancreas, liver, and gallbladder. Regarding gastrointestinal 
tract, the part responsible for nutrients absorption (vitamins, 
minerals, carbohydrates, fats, proteins) is the small intestine, an 
organ of 5-6 meters divided in duodenum, jejunum and ileum 
continuously connected to large intestine, specialized in absorbing 
water and electrolytes and divided in colon, rectum and anus, 
producing and absorbing vitamins, and forming and moving feces 
toward the rectum for elimination (21). 

Bone is a dynamic organ that undergoes significant turnover 
mediated by osteoclasts, osteoblasts, and osteocytes. In short, 
bone-resorbing osteoclasts are responsible for bone degradation 
releasing inorganic and organic products from bone matrix to 
serum in response to parathyroid hormone (PTH) whereas 
bone-forming osteoblasts synthesize bone matrix and proceed 
to its mineralization. In addition, osteocytes are responsible 
for orchestrating the bone acquisition during growth and the 
maintenance in a healthy skeleton (22).

Calcium is one of the abundant minerals available in the 
inorganic bone matrix, which provides strength to bone, preventing 
fractures. Calcium homeostasis is also controlled by an indirect 
PTH effect, but not direct, since PTH increases intestinal calcium 
absorption, via its effects on vitamin D metabolism. In the 
osteoclasts, PTH stimulates bone resorption, releasing a plethora 
of organic and inorganic products in the bloodstream, which 
calcium is collected by osteoblasts to build and mineralize the 
matrix. Thus, in combination, vitamin D and PTH are two important 
molecules involved in calcium metabolism for bone (23).

The intestine is the target of vitamins such as vitamin D (23). 
Vitamin D is a lipid-soluble vitamin that is absorbed in the small 
intestine at low concentration due to insignificant amounts available 
in the dietary sources or supplements or from synthetized by skin 
under ultraviolet light in an inactive form. The vitamin D activation 
pathway is initiated in the liver and then finalized in the kidney 
and its activated product is called 1,25-dihydroxycholecalciferol 
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(calcitriol, 1,25-(OH)2 vitamin D3). Next, activating vitamin D 
induces calcium resorption in the intestine (23, 24)

Microbiota and bone metabolism

From microbiota digestion of carbohydrates, amounts of 
short fatty acids are generate, including butyrate which is rapidly 
absorbed in intestinal epithelium for energy acquisition of the 
epithelium and its growth in addition to growth inhibitor and 
differentiation inducer of many cell lineages (19).

The central participation of the immune system on bone 
health is strongly attributed to lymphocytes, in particular, T and 
B lymphocytes. These cells regulate bone density through the 
secretion of cytokines or via direct cell-cell contact with osteoblasts 
or osteoclasts. Indeed, the role of immune system and bone 
health is strongly linked by lymphocytes, for example, lymphocyte 
deficient Rag2 knockout mice were protected by antibiotic-induced 
bone loss, suggesting that lymphocytes and microbiota are related 
(25).

SJÖGREN et al. (26) point out that bone mass is influenced by 
intestinal microbiota, since those germ-free mice have decreased 
frequency of CD4+ T cells and osteoclast precursor cells, resulting 
in high bone mass and that is reversed when germ-free mice 
are colonized with intestinal bacteria. The intestinal microbiota is 
considered an important agent in the function of epithelium barrier, 
immune system, endocrine system, food digestion and energetic 
metabolism, as well as bone metabolism such as calcium absorption 
(27-29). Some species promote the release of inflammatory 
mediators such as tumoral growth factor (TNF), interleukin (IL)-
1 and IL-6, which play an important role in the osteoclast and 
osteoblast formation (30) in addition to mRNA coding endothelial 
nitric oxide synthase (eNOS). In a dose-dependent manner, 
eNOS at low concentration promotes proliferation, differentiation, 
and osteoblast survival whereas at high concentrations inhibits 
resorption and bone formation (31, 32).

A meta-analysis study showed that bone mineral density 
(BMD) in spine and hip was not affected by probiotics. On the 
other hand, massive studies in experimental models showed an 
improvement in bone parameters related to bone health as found 
in Bifidobacterium and Lactobacillus strains, including L. reuteri, 
L. casei, L. paracasei, L. bulgaricus and L. acidophilus (13). 
Therefore, the direct association between probiotic and bone 
needs caution since that species and dosages are not completely 
understood. 

Important to notice that enterochromaffin cells constitute the 
largest population of intestinal epithelial enteroendocrine cells and 
secrete approximately 95% of total serotonin found in the body 
(33). An interesting experiment showed that single-stranded RNA 
from intestinal microbiota is perceived by intestinal channel Piezo1 
expressed in enterochromaffin cells signaling to inhibit osteoblasts 
proliferation. Indeed, deletion of Piezo1 in the intestinal epithelium 
led to increased bone formation whereas the infusion of RNase 
A increased bone mass due to lower quantity of fecal RNA and 
decreased serum serotonin levels. Thus, this study reveals that 

serotonin produced by enterochromaffin cells due to microbiota acts 
as a negative regulator of bone formation, promoting the microbial 
ssRNA and intestinal Piezo1 axis as a potential therapeutic target 
for treatment of bone (34).

Pacifici group reported that microbiota produces butyrate, 
a short-chain fatty acid that bind to GPR43 receptor on dendritic 
cells and on CD4+ T cells and induce CD4+ T cells into regulatory 
T cels (Treg), which stimulates CD8+ T cells to produce Wnt10b, 
demonstrating that butyrate coming from microbiota is necessary for 
PTH-mediated bone gain (7). Wnt10b is an osteogenic Wnt signaling 
activator that stimulates bone formation (35). Indeed, B-catenin/
Wnt signaling is crucial for bone gain, since signaling activation 
in bone stabilizes β-catenin and its consequent translocation 
into the nucleus where it binds to TCF/LEF transcription factor in 
order to stimulate Wnt target genes, resulting in elevated levels of 
osteoprotegerin (OPG), an osteoclastogenesis inhibitory factor, in 
addition to changes in cellular survival and bone metabolism (36). 
Wnt10b suppression and osteoblast and osteocyte apoptosis were 
identified as pivotal processes in preventing bone loss after long-
term glucocorticoid treatment (37).

Moreover, another association between vitamin D and 
butyrate has been observed. Analysis of older men with higher 
levels of 1,25(OH)2D and higher vitamin D activation ratios are 
more expected to have butyrate producing bacteria such as those 
specially from Firmicutes phylum, Clostridia class, and Clostridia 
order and recognized to be producers of butyrate (38).

Recent and increasing studies have shown that dietary 
supplementation in animal models implicates altered bone mass. As 
reviewed by Pacifici (39) and recently by de Sire and collaborators 
(40), several dietary supplements (proteins, peptides, amino acids, 
micronutrients, prebiotics and probiotics) contribute positively 
on bone mass. In addition to benefits on bone mass, some 
researchers reported that supplementation with Bifidobacterium 
adolescentis, one of main species hosted in intestine of healthy 
adults, attenuated the systemic inflammatory response after 
fracture, accelerated callus cartilage remodeling, and enhanced 
protection of the intact skeleton following fracture (41).

Metabolic stress caused by fat-enriched diet impairs the 
bone marrow environment, in special bone marrow stem cells 
by which differentiates in endosteal osteoblasts and adipocytes. 
Two populations of bacteria are decreased in mice receiving fat-
enriched diet, Bacteroidetes and Firmicutes, whereas increased in 
Verrucomicrobia, Actinobacteria, and Proteobacteria in the cecum 
and ileum. Interestingly, when vancomycin antibiotic against gram-
positive bacteria was administered in mice with a fat-enriched diet, 
the bone marrow stem cells fate was rescued (42).

Environmental temperature correlates with selection of 
bacteria; pointing out an existence of a signaling axis between 
warmth and the bone that is mediated by the microbiota as 
postulated by high hip fracture incidence in Northern Europe and 
low in the Mediterranean.

By using ovariectomized rats (OVX), a model of estrogen 
deficiency, the bacteria diversity was altered, with several bacteria 
genes upregulated and downregulated in the ovariectomized 



4

COSTA, R.P.  AND COLLABORATORS - J. NAT. SCI. - ELECTRONIC JOURNAL - ISSN: 2595-0584 - V.5 - N1

www.bjns.com.br DOI: https://doi.org/10.31415/bjns.v5i1.195 

rats and bacteria abundance showed a continuous increase of 
some bacterial species, mainly Helicobacter rodentium (43). In 
a recent study, Chevalier, and collaborators (11) prevented bone 
loss and improved bone strength in ovariectomized-mice after 
microbiota exposure at 34ºC. Furthermore, the transplantation of 
warm-adapted microbiota prevented bone loss in a mechanism 
involving polyamine synthesis by genera Bacteroides, Alitsipes, 
and lower polyamine degradation by genera Muribaculaceae or 
Lachnospirae, which resulted in increased osteoblast activity and 
decreased osteoclast differentiation. A direct influence of the heat 
on the bacteria is established; however, it is unclear whether the 
lower food intake and/or movement of animals impacted at any 
extent.

The insulin-like growth factor type 1 (IGF-1), a hormone with 
endocrine and paracrine/autocrine actions on bone promotes its 
longitudinal growth in addition to promote bone formation and 
resorption via osteoblasts (44). In addition, IGF-1 is increased 
in colonized mice when compared to germ-free mice (44, 45). 
Importantly, IGF-1 is mainly synthetized by the liver, thus indicating 
an existence of intestine-liver-bone axis, and bone and muscle 
cells can locally produce IGF-1 in order to stimulate autocrine and 
paracrine effects (46).

Several other metabolites have been postulated as good 
candidates in affecting bone metabolism (figure 1), such as 
serotonin; however, it has been rejected and other candidates are 
still under investigation (30).

Figure 1.

Figure 1. Intestinal microbiota communicate with several organs. The diagram shows that hormones, temperature, gestation, diet, and 
medications affect directly or indirectly the intestine and or its microbiota releasing butyrate and other metabolites, IGF-1, microRNA, 

and extracellular vesicles and still others unknown molecules that act on bone.

Microbiota and bone quantity and quality

Intriguing findings reported that mice treated with broad-
spectrum antibiotic show increased bone mass (47) and even 
when they are treated with early antibiotic dose in mice mimicking 
pediatric patients (48). In this latter study, the early antibiotic dose 
reduced the ecological progression of the bacteria, with delays 
lasting several months with previous macrolide exposure whereas 
the control group rapidly recovered the microbiota with the diet.

A higher incidence risk of fractures by 5.6 times was observed 
in postmenopausal Japanese women with low numbers of 
bacteria from Bacteroides genus. It is known that vitamin K is 
a fat-soluble compound produced by Bacteroides genus and 
is pivotal in regulating bone matrix quality due to stimulates the 

osteocalcin and matrix Gla protein production (49). In the same 
study, Rikenellaceae, a family of Gram-negative bacteria, was 
more present in the low BMD group and with high circulating 
levels of bone resorbing osteoclasts, suggesting that this family 
may have a negative effect on bone resorption and bone density. 
In addition, individuals with low BMD had less abundance of the 
Lachnospiraceae family, culminating in higher fracture incidence.

Pieces of evidence showed altered bone tissue quality in 
aged mice (12-24 months of age) receiving low glycemic diet 
associated with antibiotics (6), indicating the importance of normal 
microbiota to bone. Furthermore, young mice (1-4 months of 
age) also receiving antibiotics had impaired bone quality (50). 
In humans, lower bone mineral density is associated with lower 
bacterial community composition and diversity (2). Specifically, 
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in postmenopausal osteoporosis, the same evidence is noticed, 
with lower bacterial diversity and abundance (51).  Taken together, 
these studies show a strong relationship between microbiota and 
bone quality. 

If microbiota disrupts bone mass, germ-free mice might have 
increased bone mass. Indeed, researchers found increased 
microarchitectural parameters in male and females when 
compared to conventional caged mice; however, with differences 
sex-dependent (52). In addition, they also found increased tissue 
strength and matrix maturity. Another recent experimental report 
shows that depletion of intestinal microbiota using different 
antibiotics led to reduced bone strength without changes in bone 
quantity (53). Skeletal quality is transmitted by intestinal microbiota, 
as demonstrated in an elegant experiment that co-housed mice 
for 4 weeks normalized microbiota impacting positively in bone. 
Moreover, identified a segmented filamentous bacterium that 
negatively influence skeletal maturation by inducing intestinal 
Th17 cell expansion, an osteoclastogenic population of CD4+ T 
cells (54, 55).

Microbiota dysbiosis caused by a high fat diet decreased bone 
density due to changes in the Firmicutes to Bacteriodetes ratio. The 
abundance of Actinobacteria phylum (including Bifidobacteriaceae) 
positively correlates with bone volume (56). 

How microbiota affect bone starts to be understood. 
Intrinsic microbiota have anti-anabolic effects in suppressing 
osteoblastogenesis and pro-catabolic effects, which leads to bone 
loss. These actions are immunomodulatory and mediated by the 
liver that release molecules targeting bone marrow (46). In addition, 
fecal transplantation containing segmented filamentous bacteria 
increased CTX (Type I Collagen Cross-Linked C-Telopeptide), 
a serum marker of bone resorption in recipient mice (55). Taken 
together, and with other researchers who claim that bone mass 
is strongly associated with microbiota and mainly with the type of 
bacteria colonizing the intestine.

Several process and molecules are involved, and microbiota 
might cause bone loss due to its action on hematopoietic 
progenitors in bone marrow as demonstrated that antibiotics 
decreased CD4+ T cells (57).  On the other hand, fecal microbiota 
transplantation from young mice to aged mice could rejuvenate 
hematopoietic stem cells (lymphoid/myeloid cell) (58).

Another important question to be answered is how the 
intestinal microbiota, which is located in a very specific niche that 
targets distant bones. Metabolites derived from bacterial digestion 
through intestinal epithelium toward connective tissue and deep 
inside blood flow (21). In addition, clarifying the pathway with a 
new mechanism about how intestinal bacteria affect distant bones, 
studies have shown extracellular vesicles from young but not senile 
people prevented bone loss and strength (59) and regulation and 
function of microRNAs by microbiota (60, 61).

Probiotics and bone 

Probiotics are living bacteria-containing food products 
administered in proper quantity that provide beneficial effects to 

the intestinal microbiota of the host (62).
The majority of findings reported increased bone mass when the 

microbiota is absent (germ-free mice), depleted (antibiotics) or in 
dysbiosis (antibiotics or diseases) (63). However, supplementation 
with Lactobacillus strains (13), indicating that the certain bacteria 
present in the intestinal microbiota are crucial to maintenance of 
the bone mass and not all bacteria are negative regulators of bone 
mass.

The balance between Treg, an anti-inflammatory and Th17, 
a proinflammatory cell are part of the mechanism that indirectly 
regulates bone mass in postmenopausal mice model are 
demonstrated by studies from the same group using Lactobacillus 
rhamnosus or Lactobacillus acidophilus (64, 65).

The osteoblast regulators Runx2 and Bmp2 are upregulated 
when Lactobacillus helveticus are supplemented in ovariectomy-
induced rats, which culminates in higher bone mineral density (66), 
evidencing that in addition to osteoclasts, the osteoblastic lineage 
is also affected, at least, in part, depending on the Lactobacillus 
strain used. 

Several studies have shown that Lactobacillus plantarum is 
also able to attenuate or prevent bone loss with aging and estrogen 
depletion animal models (67-69).

Towards to this findings, a randomized, double-blind, placebo-
controlled and multicentre trial study in early postmenopausal 
women treated with Lactobacillus paracasei, Lactobacillus 
plantarum DSM 15312, and Lactobacillus plantarum DSM 
15313, once a day for 12 months revealed lower spinal bone loss 
compared to placebo group (70). Another study supplementing with 
Lactobacillus reuteri for one year neutralized the bone loss with 
the deleterious effects of the gut microbiota degradation in older 
women in a suggestive mechanism of reduced inflammation (71). In 
a study carried out on postmenopausal women with osteoporosis, 
the association of probiotics Bifidobacterium animalis subsp. lactis 
Probio-M8 (Probio-M8) with conventional treatments (calcium, 
calcitriol) was evaluated for three months. The results showed 
that co-administration of Probio-M8 improved bone metabolism, 
evidenced by increased levels of vitamin D3 and reduced levels of 
PTH and procalcitonin in the blood. Furthermore, co-administration 
of Probio-M8 increased genes related to carbohydrate metabolism 
pathways and other metabolic processes, suggesting that joint 
probiotic therapy with conventional treatments may be more 
effective in the management of postmenopausal osteoporosis (72). 

However, the possible mechanism dissected in animals show 
that after antibiotic treatment, intestinal permeability is increased, 
although femoral bone mass was reduced by 30% whereas 
treatment with a mucus supplement prevented the intestinal barrier 
break as well as bone loss, thus indicating that antibiotics might 
have affect the intestinal permeability (73). 

LIMITATIONS

Understanding the microbiota and its impact on bone is still 
evolving, with ongoing discoveries that may further refine our 
understanding of this complex interplay. Moreover, the specific 
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mechanisms underlying how intestinal microbiota metabolites 
directly influence bone metabolism remain partially elucidated, 
posing a challenge for comprehensive conclusions. Lastly, while 
our review touched upon the potential of probiotics in enhancing 
bone health, more studies are warranted to establish definitive 
causal relationships and determine optimal probiotic strains and 
dosages.

CONCLUSION

Increasing pieces of evidence show that intestinal bacteria 
content is critical in regulating the metabolites and the immune 
system by diverse mechanisms. The studies report that intestinal 
microbiota regulate bone mass and that type of bacteria is 
determinant to increase or decrease bone mass; however, point 
out the importance of Lactobacillus genus supplementation to 
prevent or recover bone loss. This is a promising and fertile field 
to be further explored by researchers who claim to be elaborating 
strategies to prevent fractures or treat bone loss in elderly 
population. 
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